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Abstract-—Using stress as the dependent variable instead of the deformation gradient, plane waves
of finite amplitude in simple elastic solids are studied. For isotropic materials there are two plane polarized
simple waves as well as shock waves and one circularly polarized simple wave which can alse be regarded
as a shock wave. With the aid of the stress paths for simple waves and shock waves in the stress space
introduced here, one can see clearly what combination of simple waves and/or shock waves is needed to
satisfy the initial and boundary conditions. We use second order isotropic hyperelastic materials to
illustrate the ideas. In one example we show that the solution requires as many as four simple waves. In
another we show that depending on the boundary condition there are more than eight possible solutions to
the problem. We also present an example in which the solution does not depend continuously on the
boundary condition. This implies that in experiments if the applied load at the boundary is not properly
controlled, any slight deviation in the applied load would result in a finite different response in the material.

1. INTRODUCTION

Plane finite amplitude waves in simple elastic solids have been studiéd by many investigators
[1-7]. The deformation gradient was invariably used as one of the dependent variables. In [4]
Bland showed that there existed three plane simple waves and three associated plane shock
waves in isotropic hyperelastic. materials; two of the simple waves and two of the shock waves
are plane polarized with respect to the deformation-gradient space and the remaining simple
wave and shock wave are circularly polarized. Davison[S5]} obtained centered simple wave
solutions to some initial and boundary conditions by a semi-inverse approach, i.e. one assumed a
certain combination of simple waves and/or shock waves to see what deformation gradients should
be prescribed as the initial and boundary conditions.

One of the main purposes of this paper is to present a means of determining the correct
combination of simple waves and/or shock waves to satisfy the prescribed initial and boundary
conditions. Since deformation gradients are seldom prescribed as the initial and boundary
conditions, we use stress as the dependent variable. We introduce the *‘stress paths” for simple
waves and “stress paths™ for shock waves to find the solutions. The idea of using the stress
paths for simple waves in solving the problem was first employed in the study of elastic-plastic
wave propagation (8, 9]. However, stress paths for shock wave were straight lines because the
shock wave studied in [8, 9] was linear and involved only one stress component.

After presenting the basic equations for plane waves in general simple elastic solids and
theory of simple waves in Section 2, we consider in Section 3 the constitutive equations for
general isotropic elastic solids which are undergoing a plane wave motion. Only two response
functions of two arguments are necessary to analyze the plane wave motion. Basic resuits for
simple waves in general isotropic elastic solids are then derived in Section 4. It is shown that
with stress as the dependent variable, we also have two plane polarized and one circularly
polarized simple waves. The general results are specialized for second order isotropic
hyperelastic materials in Section 5. We use the latter to illustrate the stress paths for simple
waves and show how one can find the right combination of the simple waves to satisfy certain
initial and boundary conditions. We show that for some problems the solution consists of four
simple waves.

Since not all initial and boundary value problems can be solved by combining the simple
waves, we study in Section 6 plane shock waves in general isotropic materials. The results are
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again specialized for second order materials in Section 7 which are then used as illustrative
examples in Section 8. We illustrate how one can find the correct solution by using the stress
paths for simple waves and shock waves. We also present an example in which the solution
does not depend continuously on the boundary conditions.

2. BASIC EQUATIONS FOR PLANE WAVES AND THEORY OF SIMPLE WAVES
In a fixed rectangular coordinate system, let x; and X; be, respectively, the position of a

particle at time t and at t = 0 which is taken as the undeformed state. The material occupies the
half space X, = 0. Assuming that the plane wave is propagating in the X,-direction, we have
X = X,' + ui(X, t) (1)

where X = X, and y; is the displacement. The deformation gradient F then has the expression

I+p, 00
9x;
Fi=3y=| p2 10 @
! ps 01
p; = ouf3X. 3)

Let T be the Piola-Kirchhoff stress tensor of the first kind. For simple elastic materials T is a
given function of F

T = T(F). 4

Since F is a function of X and t, so is T. The equations of motion and the continuity of
displacement can then be written as

as,‘ _ 9_1)_, _

X Pog; =0 &)
v _dpi _
ox a0 ©

where p, is the mass density in the undeformed state and

v=20 )
s;i= Ty = 0oy ®

In eqn (8) o;; is the Cauchy stress which is related to T;; by [10]
o=J"'TF" ©

where J = ||F| and the superscript T stands for the transpose. The second equality of eqn (8)
follows from the special form of F given in eqn (2).
Noticing that s; is a function of p,, p, and p;,
$i = 8Py, P2 P3) (10)
and assuming that its inverse as well as the derivatives

Gii = Bpilas,- (11)

exist, we write eqns (5), (6) in matrix notations as
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S,x — Po¥or =0
Vox — Gs,, = 0} (12)

where a comma stands for the partial differentiation. Introducing the following matrices

a=[Fal ool =[] "

where I is the unit matrix, eqn (12) has the form

Aw,, +Bw,x =0. (14
The formulation here differs from that of {1-7] in that the dependent variables are s and v, not p
and v. Notice that B is a constant matrix while A depends on s only.

To find a simple wave solution for eqn (14), we assume that w =w(¢$) where ¢ = ¢(X, t).
Equation (14) then reduces to

uA—m§%=o (15)

c=- ¢u/¢’x- (16)

A nontrivial solution for dw/d¢ exists if

lcA-B|=0 an

where ¢ can be identified as the characteristic wave speeds. Along the line ¢(X, t) = constant, w
and hence s is constant. Equation (17) implies that ¢ also is constant. It follows from egn (16)
that ¢(X, t) = constant are straight lines in the (X, t) plane. These straight lines need not pass
through the origin [9]. If they do, they are called centered simple waves.

In view of eqn (13), eqn (17) is equivalent to

IG a1} =0 (18)

7 = (poc?)”’ (19)
If r = (ry, 15, 13) is the right eigenvector of (G — nl),
G-nDr=0 (20)

it can be shown that the right eigenvector of (cA — B) is (—r/pqc, r). Since eqn (15) implies that
dw/d¢ is proportional to the right eigenvector of (cA —B), we obtain[11,12]

ds, _ds; _ds,
Ty r, - r (213)
dv; = — ds;/pyc. (21b)

Noticing that r is a function of s, eqn (21a) can be integrated to provide two-parameter families
of curves in the (sy, s,, 53) space. These curves are called “‘stress paths” for simple waves. Since
there are three eigenvectors r associated with three eigenvalues 7, there are three sets of
“stress paths” for simple waves.

In the rest of the paper, we will limit our attention to isotropic simple elastic materials.
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3. ISOTROPIC SIMPLE ELASTIC SOLIDS

For isotropic simple elastic solids, the constitutive equation for the Cauchy stress & can be
written as [10]

o =JJd+ J(FFT)+ J(FF") (22)

where FF is the left Cauchy-Green tensor, J, (i =0, 1,2) are fu_nctions of the invariants of
(FFT): For the F given by eqn (2), it can be shown that J; are functions of p; and p,°+ ps* only.
Substitution of F into eqn (22) and noticing that s; = ¢;, from eqn (8), we obtain

S\ = f(f, 'YZ)
$2= pagle, v7) (23)
s3=psgle, 72)

where

P\=¢€ p>=ycos8, p;=ysinf (24)

and f and g are arbitrary functions of € and y>. € and y may be identified as the longitudinal
and shear strain, respectively. For hyperelastic materials, we must have

98 _ 95

25
a, o, )
which implies that
8e = 2f,2 (26)
Again, a comma stands for the partial derivative.
It is not difficult to see that the inverse of eqn (23) can be written as
p.= €= h(o, 1%
p2= 5:q(0, 7°) 7
p3=53q(o, )
where
$,=0,5:=7C086,8;=Tsin @ (28)

and h and q are arbitrary functions of ¢ and 7°. ¢ and 7 may be identified as the normal and
shear stress, respectively. 6 is the angle the shear stress 7 makes with X,-axis. If the material
is hyperelastic, G; = G; and it follows from eqns (11) and (27) that

4.0 = 2h,2. (29)

4, SIMPLE WAVES IN GENERAL ISOTROPIC MATERIALS
With p; as functions of s; given by eqn (27), substitution of eqn (11) into eqn (18) yields the
following cubic equations for 7

('ﬂ - q) {"2- (hm + q + 272(1,12)"1 + qhw + 272(hsuq"2 - hs‘rzq;a)} =0. (30)

Denoting the three roots of 0 by 7, 12, 13, we have



Plane waves in simple elastic solids 993

m= %(hw +q + 2724»7’) -Y

7=q (31
my=3 o+ g+ 2070, + Y
where
= (= byt G4 2070, 4 870, 2g,,) (3

The reason for ordering 7;(i = 1,2, 3) in the way shown in eqn (31) is that for some materials
(see Section 5) 7, <1, =%, and hence c;=c,=<¢c,.
We will now discuss the “stress paths” for simple waves for each wave speed separately.

@ n=m=q,(c=¢c)
The right eigenvector r of eqn (20) for n =7, is

r=(0,s; — s (33)
and eqn (21a) yields the following solution

$, = constant
. 57 } (34)
§5°+ 8§57 = constant

or in view of eqn (28)
o = constant
T= constant} (33)

In the (s,, 54, 55) space, the “stress paths™ given by eqn (34) are circles. Following Bland {4], we
may call the simple wave associated with ¢ =c, the “circularly polarized” simple wave
although Bland used the deformation gradient instead of stress as the dependent variable. Since
q is a function of o and 72 and since o and 7 are constants on the stress path, ¢, is constant
along each stress path. The simple wave associated with ¢, therefore is in fact a circularly
polarized shock wave.

(i) n=n,(c=c)orn=m(c=cy
The right eigenvector r of eqn (20) for n = n; or n; is

r= {% (=ho+q+2°¢,)2 Y, = 520~ 83qw} (36)

where the upper sign is for n = n, and the lower sign is for n = 7,. Equation (21a) becomes,
making use of eqn (28),

# = constant 37

dr . ~7q:s

%(— ho+q+21%°,)F Y
E— —3

27h,, (38)

%(— he+q+21%q.)zY

The second equality of eqn (38) follows from the definition of Y given in eqn (32). If we
interpret eqn (28) as the transformation from the rectangular coordinate system (s,, s, 3) to the
cylindrical coordinate system (o, 7, 6), eqn (37) implies that the stress paths for ¢ = ¢, or c,
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simple waves are confined to a radial plane of the cylindrical coordinates. They are called
“plane polarized” simple waves. Integration of eqn (38) provides one-parameter family of
curves for each of ¢ = ¢; and ¢ = ¢; in the {0, 1) plane which is a radial plane.

Noticing that the upper sign is for ¢ = ¢, and the lower sign is for ¢ = ¢;, one obtains from
eqn (38) that

(gﬁ) (gg) =~ Gl 2hy7). (39)

For hyperelastic materials the right-hand side reduces to —1 in view of eqn (29). Thus the
stress paths for € = ¢, and ¢ = ¢; are orthogonal to each other for hyperelastic materials. Taking
into account of the stress paths for ¢ = c,, we see that for hyperelastic materials the stress
paths for all three wave speeds are orthogonal to each other in the (s,, 5, 53) space.

For some initial and boundary conditions which are constants, one may be able to obtain the
solution by suitably combining the simple wave solutions associated with all three wave speeds.
The circularly polarized simple wave ¢, is a circularly polarized shock wave across which the
stress state (o, v} jumps from one radial plane to another without altering the values of (¢, 7). It
follows that one would have two simple waves ¢ = ¢; and ¢; and one shock wave (c = ¢;).
However, as we will see in the next section, when the stress path passes through the stress state
at which ¢, = ¢, one would have four simple waves.

5. SECOND ORDER ISOTROPIC HYPERELASTIC MATERIALS

For illustrative purposes we will consider isotropic hyperelastic materials of second order,
i.e. the r.h.s. of eqn (27) contain s,, s,, §; of order up to two. Hence

h=00+gﬁz+§fz (40a)
q=d+eo (40b)

where a, b, d and e are material constants. The appearance of constant ¢ in both equations
ensures that the material is hyperelastic. Equation (27) now has the expression, using eqns (24)
and (28),

6=aa+g~02+-§rz. (1)
v=1{d + eo).

For linear materials b = ¢ =0 and hence a and d can be identified with the Lamé constants A
and u by

d=1/u (42)
a=1/(x+2u) .
Since Lamé constants are positive, we have
d>2a>0. 43

Unless otherwise stated, we exclude the linear case b = e =0.

5.1 Wave speeds
With egns (40), eqn (31) becomes

n|=;—-(a+bcr+d+ea)~—Y

n,=d+ eo
1 44
7}3=2—(a+b0+d+80)+y

= ;—{(— a-bo+d+er)+4e*}? .
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It can be shown that
(M2~ m)(ms =) = €1’ =0. (45)
This and the fact that n;— 7, =2Y =0 lead to the following result
HEMEN (46)
or, in view of eqn (19),
C1Z= = (s 47

Simple waves associated with ¢, (or 1,) and c; (or ;) will be called, respectively, the “fast” and
“slow” simple waves. They were called “quasi-longitudinal” and *“quasi-transverse” waves in
[4,5,7]. The latter names are appropriate when o and 7 are small. As we will see shortly the
slow simple waves can be longitudinal.

It is instructive to see how the wave speeds ¢, and c; depend on (¢, 7) by considering in the
(o, 7) plane the contour lines for constant n, or n,. To this end, we substitute eqns (40) into the
quadratic part of eqn (30) and rearrange the result to obtain

(n—-d-eo)n—-a-ba)-e*r*=0. (48)

Thus the contour lines are ellipses if eb <0 and hyperbolas if eb > 0. In particular, the contour
line for n =01is

(a—m,}(a—-m,)-i—rz=0 49)

where
m;=-alb, my=—dle. 50)

If be <0, it is an ellipse which intersects the g-axis at ¢ = m; and m, where m, and m, are on
the opposite sides of o = 0. All three wave speeds are real inside this ellipse. If be >0, it is a
hyperbola which also intersects the o-axis at o = m; and m, where m, and m, are on the same
side of o =0. All three wave speeds are real in the region which contains the origin e =7=0
and bounded by one branch of the hyperbola which is nearer to the origin. Notice that on the
o-axis 7, =0 at 0 = m, and either 5, =0 or ;y=0at o =m,.

From eqns (44) and (46) we see that if Y =0, 7, = 1, = n;. We therefore have

m=m=m=d+es*=a+bo* (51)
at
d—a
= A
r=0, o=0 b e 52
The following identities between o*, m; and m, can be derived from eqns (50) and (52)
my=ko*+{1-k)m, (53)
- 2
(0* = m)Xo*-m) = (1-K) (1"—kL"~’-—) (54)
where
=1-2
k=1 Y (5%)
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We see from eqn (54) that o* is located between o = m, and o = m, if k > 1 and outside of the
(m,, m,) interval if k <1.

5.2 Stress paths for simple waves
When we change the sign of ¢, b, o and €, eqns (41) and (55) remain the same. We will
therefore consider

e>0 (56)
only, because the solution for e <0 for the same k value can be obtained from the solution for

e >0 by changintg the sign of o and e. The degenerated case e = 0 will be discussed separately.
The stress paths for simple waves associated with ¢ = ¢, and c; are given by eqn (38) which

reduces to, using eqns (40),
L N AR b
oG+

k& k& 2 1124 -1 (57)
-{Z=(E) +) }
where the = signs are for ¢ = ¢, and ¢, respectively, k is defined in eqn (55) and
G=0c-o* (58)

Equation (57) can be integrated in closed form if we replace (&/7) by a new variable. In [13],
eqn (57) was selved explicitly and its characteristics were discussed in detail for k <0. In the
present problem k is arbitrary. Depending on the value of k, the stress paths obtained from eqn
(57) can be divided into four cases and are shown in Figs. 1-4. The solid lines are the stress
paths for fast simple waves while the dashed lines are for slow simple waves.

Case 1: e>0,—wo<k=s~1.
Case 2. e>0,-1<k=0.
Case 3. (a) e>0, O0<k=1-ald
®) e>0, 1-ald<k=]l. (59)
Case 4. (a) e>0, 1<k=2.
(b) e>0, 2<k=<4
(¢) >0, 4<k<e>,

Notice that these cases are for e >0. For e <0 one simply takes the negative g-axis as the
positive o-axis in Figs. 1-4.

Fig. 1. Case 1: e>0, ~c<k = - 1. (m> —xas k- —-x).
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Fig. 2. Case 2: >0, -1 <k =0. (tana = (1+k)'"? < 1. g* > as k- 0).

m m,
case 3b

Fig. 3. Case 3a: >0, 0<k=s1-a/d Case 3b: e>0, 1-ald<k=1. (m =my=a* when k=1-4d/d,
m--xask-1, |<tana=(1+k)'?</2).

Fig. 4. Case 4a: ¢>0, 1<ks2, (0 < B =<a, as shown). Case 4b: ¢>0, 2<k <4, (a <B =f2). Case 4:
e>0,4<k <o, (7R2<B <Bux<mw—a). (M3 ~x as k->x).

The difference between Case 3a and 3b is the location of m, and m,, Fig. 3. The difference
between Cases 4a, 4b and 4c will be explained later. As stated earlier, all three wave speeds are
real in the region to the right of the hyperbola which passes through o = m, in Figs. 1 and 2. In
Fig. 3 all three wave speeds are real in the region to the right of the branch of hyperbola (not
shown) which passes through o = m, for Case 3a and o = m, for Case 3b. For Case 4 the wave
speeds are real inside the ellipse which passes through o =m; and m, The following
observations should be noted:

(i) The stress paths for the fast and slow simple waves are orthogonal to each other except
at the singular point (¢*, 0) where ¢, = ¢, = ¢, [13]. For Case 2 there are infinitely many stress
paths passing through the singular point, Fig. 2.

(ii) If we replace & by — & in the r.h.s. of eqn (57), (dG/d7)..., is identical to — (dald7)..,
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Therefore, the stress paths for the fast simple waves are the mirror image with respect to the
line & = o* of the stress paths for the slow simple waves and vice versa. If follows from (i) that
all stress paths intersect the line o = o* at 45°,

(iii) From eqn (57) it is seen that d&/dr is constant along the lines &/7 = constant. This
implies that all stress paths intersect any straight line draw from (¢*,0) at the same angle.
Hence all stress paths are similar. It is possible that one of the straight lines from (o*,0) is a
stress path. To find this line, we set d&/dr = &/7 in eqns (57) and obtain

Frle=(1+k)"=tana {60)

where the upper (or lower) sign is for ¢, (or ¢;) and « is the angle this line makes with the
o-axis. We see that « exists only for k > — 1, (see lines o*a and o*a’ in Figs. 2-4).

(iv) The o-axis is itself a stress path for simple waves and corresponds to longitudinal
waves because 7 = 0. However, one side of o = o* is the stress path for the fast simple waves
(c = ¢} while the other side is for the slow simple waves (¢ = ¢,). Therefore, both the fast and
slow simple waves can have longitudinal waves.

(v) Along a stress path ¢ is a function of 7. To determine if the wave speed increases or
decreases along the stress path, we find the sign of

dr 4 + do dr 2

where 7 = 7, or n; is given by eqn (44) and do/d~ is given in eqn (57). In Figs. 1-4 the arrows
along the stress paths indicate the direction along which ¢ is decreasing. To find the point on a
stress path at which ¢ is a maximum or minimum, we set the r.h.s. of eqn (61) to zero. We
obtain

12
ig=-k(—3(§:—i}-)l—-=tan B. (62)
These are the lines ¢*b and o*b’ in Fig. 4 which make an angle § to the o-axis. Equation (62)
requires that kK > 1 and hence only Case 4 can have a maximum or minimum wave speed along
the stress paths. As shown in Fig. 4, when the stress path for the fast (or slow) simple waves
intersects the line a*b (or o*b’), the fast (or slow) wave speed is a minimum (or maximum).

The angle B increases as k increases for Cases 4a and 4b. For Case 4a where 1 <k =<2,
0< B <o For Case 4b where 2<k <4, a <B =u/2. For Case 4c where k >4, § increases
beyond /2 as k increases, reaches a maximum angle B, and decreases to 7/2 as k >x. At
the k value at which B = B it can be shown that

Bmax + o <. (63)
Therefore the line o*b (or o*b’) always lies to the right (or left) of the line o*a (or g*a’).
One special case which is not easily reducible from the four cases mentioned so far is the
case e = 0. We call this
Case I': e=0, b>0, k=~ (64)
The stress paths for this case are shown in Fig. 5. The point m; is at infinity. The wave speed is
constant along the vertical lines regardless of whether the line is the stress path for fast or slow
simple wave. If b <0, Fig. S still applies if we take the negative o-axis as the positive o-axis.
5.3 Centered simple wave solutions

Suppose that the half space X > 0 is initially at rest and the stress at t =0 is given by

(a,7,8)=(a"1",8") (65)
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Fig. 5. Case 1 ¢=0, b >0, k = ~=, (The wave speed is constant along the vertical stress paths.)

while the stress applied at X =0 is
(0,7,0)=(c" 1% 67 (66)

where the superscript b and a stands for “before” and “after”, respectively. As discussed
earlier, if 6°# @° there is a ¢, shock wave which brings the stress state on the 8°-radial plane to
the 6°-radial plane. In Figs. 1 and 2 let (o, %) and (0%, 7°) be given by the points B and A,
respectively. Then the solution consists of a fast simple wave in which the stress changes from
point B to point M and a slow simple wave in which the stress changes from point M to point
A. This is depicted in Fig. 6 in which (o™, T™) is the stress state at point M in Figs. 1 and 2. The
¢, shock wave changes the stres state (o™, *™) from the 6°-radial plane to the §°-radial plane.
In both Figs. 1 and 2 the stress path from B to M and then to A is in the direction of decreasing
wave speed and is consistent with the description of the solution shown in Fig. 6. An admissible
stress path for the simple waves is the one which follows the arrows shown in Figs. 1-5. One
can shift from a fast simple wave path (solid line) to a slow simple wave path (dashed line) but
not vice versa except at the singular point (o*, 0) in Fig. 3. If the points B and A are given as shown
in Fig. 4, there is no admissible stress path for a simple wave solution. In this case shock waves are
generated. We will discuss shock waves in the following sections.

Before we close this section consider the example in which points B and A are given in Fig.
3. The admissible stress path is BSMTA and the solution is shown in Fig. 7. Notice that the
stress at point M is (0*,0) and because 7™ =0 there is no ¢, shock wave. In fact, the stress

(g, tb, 8°)

0 X ©

Fig. 6. Centered simple wave solution. Fig. 7. The solution for (o®, 7} = B and (6, +*)= A in Fig. 3.
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state can be moved from the 8°-plane to the °-plane at any time when (o, ) is between the
points S and T without the presence of a ¢, shock wave because = 0. We see that we have
four simple waves for this example. At point (o*,0) we have ¢, = ¢, = ci. This is a singular
point which always provides some unexpected phenomena [13).

6. PLANE SHOCK WAVES IN GENERAL ISOTROPIC MATERIALS
If we denote the jump of a quantity f across a shock wave by

fl=f-f (67)

where f~ and f are the values of f behind and ahead of the shock wave, the jump conditions
representing the conservation of momentum and the continuity of displacements can be written
as [10]

[s]+poV[v:]=0
(68)
[v]+ VIp]=0

where V is the shock wave speed. Elimination of [v;] and making use of eqn (27) we have

[s:1= pV{h] (692)
[s2] = poV7[524] (69b)
[s3] = poV[534] (69¢)

where h and q are given functions of s, and (s, + s;2). For afixed (s,", 52", 557), eqns (69) provide
three equations for (5,7, 5,7, 5;7) with the shock wave speed V as the parameter. When V
varies, (8,7, 557, 537 traces a “stress path for shock wave” in the stress space. Each point on the
stress path corresponds to a shock speed V. We will see that there are three stress paths for
shock waves emanating from the point (s,*, s,*, s;) and that they are tangential to the stress
paths for simple waves at (51, 5,", §;%).

Elimination of V between eqns (69b}) and (69¢) and simplifying the result, one obtains

[qllsofs5] = 0. (70)
Therefore either [q] =0 or [s,/s3] = 0. We will discuss these two cases separately.

(1) Plane polarized shocks
When [5,/s5;] =0, it follows from eqn (28) that

0 =6" (7
and eqns (69b) and (69¢) are reduced to the same eguation
[r]= poV7(rq]. (72)
This and eqn (69a) can be combined and written as

§=m=_{h_ (-;3)

[«1 (o

v | busnd

where

£=(pVH " (74
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Equation (71) indicates that the stress in front of and behind the shock wave are on the same
radial plane in the (s), 5, 53) space and hence this is a plane polarized shock wave. The second
equality of eqn (73) provides the stress path for shock wave in the (o, ) radial plane. We will
prove that there are two stress paths for shock wave which are tangential to the two stress
paths for simple waves at (0", 7") and that the shock wave speed V on each stress path for
shock wave approaches c,* and c;*, respectively, as (¢~, ) approaches (¢, 7).

When (o~, 77) is very near {(¢*, 77}, eqn (73) in the limit becomes

_d(rq) _dh
€= dr do’ 3)

Noticing that q and h are functions of ¢ and 72, we have

. do _ dr
E=q+ f(q,, & 2Tq,,z) =h,+2r 5T b (76)

If we solve for dr/do from the second equality, we find that there are two solutions and they
are identical to dr/do for stress paths for simple waves given by eqn (38). Substitution of dv/do
back to the first equality of eqn (76) and comparison with eqn (31) shows that £ =14, or .
Therefore V = ¢,* or ¢;* at (o*, 7*). This completes our proof.

We will denote by V, (or V3) the shock wave speed associated with points on the stress path
for shock wave which reduces to ¢;* (or ¢;*) when (¢, 77) approaches (¢*, 77).

(2) Circularly polarized shock
When [g] = 0, eqns (69b) and (69c¢) vield

£=(pV) ' = q = constant an
and egn (69a) becomes
h — go = constant. (78)

Equations (77) and (78) provide two equations for (¢, 77) when (¢*, 7*) is known. A trivial
solution is

[el=[7]=0 (19)

which is identical to eqn (35) and the stress path for shock wave is a circle in the (s,, 5,5, §3)
space. Denoting the shock wave speed given in eqn (77) by V, and using egn (31), we have

Vz = C2+ = C-_p_. (80)

If eqns (77) and (78) vield a solution other than eqn (79), we would have a shock wave with
V = ¢, which is not circularly polarized. However, a shock wave of this kind can be regarded as
two shock waves merged into one; one circularly polarized shock wave in which the stress
jumps from one radial plane to another and one plane polarized shock wave inawhich the stress
jumps from (o*, v to(¢™, 7).

It should be noted that pot every point on the stress path for shock wave is an admissible
shock. According to Lax[14], a shock wave is stable if

g zVize', (i=1,2,3). 81

Otherwise, the shock wave may develop into a simple wave. Equation (80) implies that eqn (81)
is satisfied for i =2 and hence the shock wave associated with V, is always stable and
admissible. However, shock waves associated with V, and V; may be unstable unless eqn (81)
for i =1, 3 are satisfied. To indicate the dependence of V; and ¢; on (¢*, v*) and (o™, 77), we

SS Vol. 19. No. H--E
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may also write eqn (81) as
clo”,)zVio , 0", ) =c(o’, 1Y) (82)
where it is clear that
Ve, 7" 07, 77)= Ve, 77; 0", 7). (83)

7. STRESS PATHS FOR SHOCK WAVES IN SECOND ORDER
ISOTROPIC HYPERELASTIC SOLIDS

The stress paths for shock waves V,, V, for second order isotropic hyperelastic materials
can be written as, using eqns (73) and (40)

b e
g - dlrl+ o) _ alo] +7 [0 +5(7’) -
{7] [o]
If 7 # 0, the second equality can be rewritten as
k+1 [o] G’ [o] _ (7]
{1+2+[]}—[——]~;+k %2 (”27) 0 (85)
or
!(it_ k [T] 112
lo] _ 27*+{(2'r ) (HZ )(H 27" [r ])} (86)
[T] K ++1 (7]

where * = " — o* and the ¥ signs are for V, and V,, respectively. This provides the stress
path for admissible (¢, 7") when (a7, ") is given provided that the stability condition, eqn
(82), is satisfied. Notice that as [¢]—0 and [r] >0, eqn (86) reduces to eqn (57). Notice also
that, unlike the stress path for simple waves, one cannot choose any point on the stress path for
shock wave as a new (¢*, 7*). If one chooses any point on a stress path for shock wave as a
new (0¥, 7%), eqn (86) in general yields a new stress path for this new choice of (¢*, 7).

If +* =0, the second equality of eqn (84) yields

7 =0 (87a)

or

(7= (k + 1){0’]([0']+ lsz ) (87b)

Equation (87a) is the equation for the o-axis while eqn (87b) is a hyperbola. Mgreover, eqn (84)
yields

‘t=d+ec =73, whent #1°=0 (88a)

t=a+b(c"+07)2, whent =1"=0 (88b)

where use has been made of egn (44).
A particular case of eqn (87b) which will be useful later on is when ot =0. We have

(TP =(k+ 1)0'{0‘ - 1%:(,( 0'*}. (89)
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One branch of this hypetbola intersects the o-axis at ¢ = ¢ where

2k
1+k

o*. (90)

o=

For q and h given by eqns (40), eqns (77) and (78) have no solutions other than eqn (79).
Hence for second order isotropic hyperelastic materials the V, shock wave is always a
circularly polarized shock wave.

8. SOLUTION OF INITIAL AND BOUNDARY VALUE PROBLEMS

In Section 5.3 we considered certain initial and boundary value problems for which the
solutions can be obtained by suitably combining the fast (¢;) and slow (c,) simple waves as well
as the circularly polarized simple wave c, which can also be regarded as the circularly polarized
shock wave V,. For other initial and boundary value problems one has to introduce the shock
waves V, and/or V,. For illustrative purposes we will consider second order isotropic
hyperelastic materials and the following initial and boundary conditions

(0,7)=1(0,0), at t=0

on
=(cg% %), at X=0{.
Depending on the location of (¢° 7°) in the (o, 7) plane, the solution may consist of a different
combination of simple waves and/or shock waves. However, with the stress paths for simple
waves and shock waves introduced in this paper, one can determine the right combination for
the solution. We will use Case 3b and Case 4a to illustrate our point.

8.1 Case 3b.e>0,1-ald<k=1

With the initial value being zero and the boundary value prescribed as (¢, 7°), the solution
depends on the position of (¢° 7°) in the (o, ) plane, Fig. 8 (see also Fig. 3). If
(¢ %) is the point A, in region I bounded by the positive o-axis and OP which is
the stress path for slow simple wave from the origin, we have the solution .which consists
of two simple waves as shown in Fig. 9. If (¢*, %) is outside of region I, there is no solution
which consists of simple waves only. In this case we consider a shock wave V, with (o, 7*) =
(0,0). The stress path for shock wave V, is the negative o-axis Odm, as given by eqn (87a)
and the curve ¢#Q which is one branch of the hyperbola given by eqn (89). The other
branch of the hyperbola violates the stability condition, eqn (82), and hence is not admissible.
The point & is given by eqn (90). It can be shown that when (¢, r7) is on Ogm, or ¢Q the
shock wave is stable, i.e.

(e, )= V(e , 175 0,0)= ¢,(0,0). (92)

We use double solid lines (or double dashed lines) to denote the stress path for admissible
shock wave V, (or V;). The arrows on the path indicate the direction from (0,0) to (¢7, 7").

m, A, o* & o o

Fig. 8. Case 3b: Initial condition (g, 7) = (0,0), boundary condition (¢, 7*) arbitrary.
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Fig. 9. Case 3b: Solution in the (X, 1) plane for (o°, +°} in the region shown in Fig. 8.

Thus if (¢, 7°) is the point A, in region IT bounded by QGOP, the solution consists of a shock
wave V, which carries the stress from point O to M followed by a slow simple wave c; which
carries the stress to A,. Since the slow simple wave follows the shock wave V,, Fig. 9, we must
have

cle™, )= Vi(e™, ™;0,0) 93)

where (o™, 7™) is the stress in the constant state region m. It can be shown that (93) is satisfied
for (¢™,7™) on O6Q in Fig. 8. It can also be shown that the equality in (93) holds at
(c™, ™) = (3,0). Thus if point A, were on the stress path for slow simple wavé from point ¢ in
Fig. 8, the constant state region m in Fig. 9 vanishes. The simple wave ¢, follows the shock
wave V, without a constant region. Equation (93) is violated for (¢, ™) which lies between
the points ¢ and o*. Hence a slow simple wave ¢, cannot follow a shock wave which carries
the stress from (0, 0) to a point between & and o*.

If (0% 7%) is the point A; in region III, Fig. 8, which is bounded by 6m, and 6Q the solution
consists of shock waves V, and V,, Fig. 9. In Fig. 8 the double dashed line MA, is the stress
path for shock wave V; which is obtained from eqn (86) by setting (¢*, ) =(c™, *™). It can
be shown that when (c% 7°) is on MA,, the shock wave is stable

c(a’, )= Vo’ 1% ™, 1) = ¢3(a™, ™). %4
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For both shock waves to exist as shown in Fig. 9, we must have
Via% % 0™, ™)< Vi(e™, 1™;0,0). 95

This is satisfied for (¢°, 7°) in region III.

Notice that there are actually more than three types of solutions as shown in Fig. 9. For
instance, if (o 1°) is on the positive o-axis (or on OP), the solution consists of one simple
wave c, (or cs) only. Similarly, if (¢ %) is on the negative o-axis or on 6Q, the solution
consists of one shock wave V, only.

8.2 Discontinudus dependence of solution on boundary conditions

The stress path MA, for shock wave V; in Fig. 8 is obtained from eqn (86) by letting
(¢*,7")=(c™ ™). The path intersects the o-axis at point A,; the location of A, can be
determined by fetting »” =0 to find o~ in eqn (86). If (0 °) is at point A;, we have the
solution in which a V, shock wave carries the stress from point O to M followed by a V; shock
wave which carries the stress from M to A,;. On the other hand, if (¢ 7°) is at point A,, we
have the solution in which only one shock wave V, carries the stress from point O to A,. As
point A, approaches A, it can be shown that

Vi(M; 0) = Vi(A; M) = V(A O). (96)

The constant region m, Fig. 9, between the two shocks diminishes to zero and the two shocks
coalesce into one. Therefore, in the limit as A; approaches A, the two solutions are identical.
However, as long as A, is not on the o-axis, we have a constant stress region m in which the
shear stress t™ is finite; although the constant region may be small for small time ¢.

Thus for a half-space which is initially stress free, an impact at the boundary X =0 with
g < ¢ and r° = 0 will produce one shock wave which is a longitudinal shock because no shear
stress is generated. If 7% is nonzero but very small, one has two shock waves (neither of them is
longitudinal) with a finite shear stress between the two shocks although the region between the
two shock waves may be small for small time. In experiments this implies that a slight
misalignment of the longitudinal impact at X = 0 can produce quite different response at X # 0.

8.3 Case 4a.¢>0,1<k=<2

We choose Case 4a because it is far more complicated than Case 3b. Referring to Figs. 4 and
10, we see that if (o, 7*) is in region I bounded by the positive o-axis and OP which is the
slow simple wave path from the origin O, we have the solution in which a shock wave V, is
followed by a slow simple wave c,, Fig. 11. If (¢° 7“) is in region II bounded by a'c*OP
where ag*a’ is the slow simple wave path from point o*, the solution consists of one fast simple
wave ¢, and one slow simple wave c,.

We will refer to Figs.. 10 and 11 for the remaining regions. For (¢, 7°) in region III which is
bounded by RDo*a’ where ¢*D is a straight line which we will determine later and DR is the
slow simple wave path from D, the solution consists of a fast simple wave ¢, from point O to E,
immediately followed by a shock wave V, from E to M and a slow simple wave from M to (¢°,

Fig. 10. Case 4a: Initial condition (o, ) = (0, 0), boundary condition (0, 7°) arbitrary.
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Region I

Region TII Region IW

Region ¥ Region 31
v, T ¢
1 3
t ~Nv,
VI
Vi
X X
Region MIT Region XTIT

Fig. 11. Case 4a: Solution in the (X, 1) plane for (c°, 7°) in the region shown in Fig. 10.

7%). To find the relation between (¢™, ™) at M and (¢*, 0) at E, we use eqns (88a), (44), (82) and
(87b) to obtain

o™ 1™, 05 0)=d +ec™ 97
n(c%0)=a+ ba* (98)

(g™, ™)z Vi(e™, 1™; 0%, 0) = ¢,(c’, 0) (99)

(™2 = (k + (o™ - cr'){(cr'" — o)+ T%f‘—k (o° - 0*)} (100)

where £ = (po V1)~ and ;= (poc,?)~". The equality in the second of (99) is due to the' fac} that
the shock wave V, follows immediately behind the fast simple wave c,, Fig. 11. Substitution of
eqns (97) and (98) into the second of eqn (99) yields

o™ =ko*— (k- 1o’ (101
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and egn (100) provides
™ = k(k ~ 1)"Ho* - o*). (102)

As point E moves from point ¢* to O, M moves from ¢* to D. To find the line o*D which is
the locus of M, we eliminate o° between eqns (101) and (102). We have

7" - k
o™ —o* k-1)"

(103)

and hence o*Dis a straight line. The lines o*a and o*b' in Fig. 4 are reproduced in Fig. 10 to
show the relative position of o*D. It can be shown that for (¢, °) in region III, (99) is satisfied
and that

Va5 0; ™, ™) = ¢cs(a™, 7). (104)

When (¢*, #°) is on the slow simple wave path DR, the solution consists of a shock wave V,
from point O to D and a slow simple wave ¢; from D to (¢°, 7°). In Fig. 10, DQ is a portion of
the shock wave path V, which is a hyperbola with (¢, 7%) = (0, 0) given by eqn (89). It can be
shown that the straight line o*D is tangent to the hyperbola DQ at point D. For (¢ 7°) in
region IV which is bounded by QDR, the solution consists of a shock wave V, from point O to
a point on DQ followed by a slow simple wave ¢, to {o°, 7°).

Region V is the triangular region o*DH where DH is the shock wave path for V; with
stress at D as (¢”, 77) and is given by eqn (86) while o*H is a straight line we will determine
shortly. Region VI is bounded by m,c*HG where HG is the slow simple wave path from H.
For (c*, t°) in region V, the solution consists of a fast simple wave from point O to E, a shoek
wave V, from point E to M and a shock wave V; from M to (¢®, 79). If (o°, 7°) is in region VI,
we will have a fast simple wave from point O to E, a shock wave V, from point E to M, a
shock wave V; from M to N which is on the boundary Ho™* between regions V and VI, and a
slow simple wave c;, Fig. 11, Thus point N has the following property

ci(a”, 1") = Vy(e", "5 o™, ") (105)

which means ;= &, This leads to, using the first equality of eqn (84) and eqn (44)

[Nel, , & o _(, [\ _
{1+k7+}[—7—],+k7* a (x+7+) =0 (106)

where (¢, ") =(¢", ™), (67, 77)=(c¢", 7). The shock path MN is given by eqn (85).
Equations (85) and (106) provide two equations for (¢7, ") when (0, 7") is known. If we
subtract eqn (106) from (85), we have

el 1 (2

Since the left-hand side is always positive, we must have k > 1. Therefore, eqns (85) and (106)
have no solutions in other cases except Case 4. In other words, one cannot find (¢™, ™) and
(0", 7") such that eqn (105) holds in Cases 1-3. The same conclusions hold if c; and V; in eqn
(105) are replaced by ¢, and V.

As point M moves from o* to D, N moves from o* to H. Since o*D is a straight line, it is
not difficult to show that o*H is also a straight line. For (¢, 7°) in region V or VI it can be
shown that the shock waves V| and V; are stable and that V,< V,.

Region VII is bounded by SHDQ where HS is a curve which has the similar property as the
line o*H. Thus the curve M'N' in Fig. 10 is a shock wave path V; with the stress at M’ as (0",
7%). The stress at N' satisfies eqn (105) if we replace n and m by n' and m’. Therefore, the
locus of N, which is the curve HS, is obtained from eqns (85) and (106). Unlike o*H which is a
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straight line, HS is not a straight line because DQ is not. For (¢°, 7°) in region VII, the solution
consists of two shock waves V, and V,, Fig. 11. For (¢° 7°) in region VIII, the solution
consists of two shock waves V, and V; followed by a slow simple wave c;. Again we can show
that both shock waves are stable and that V;< V.

As we emphasized before, there are actually more than eight possible solutions shown in
Fig. 11 because degenerated solutions are obtained when (o® 7°) is on the boundary of a
region.

9. CONCLUDING REMARKS

We have demonstrated in this paper how one may use the stress paths for simple waves and
shock waves to Yetermine the right combination of simple waves and/or shock waves to satisfy
given initial and boundary conditions. It should be pointed out that one could extend the idea
and introduce the “‘velocity paths” for simple waves and shock waves in the velocity space if
the initial and boundary values are prescribed for the velocity. If the deformation gradients are
prescribed as the initial and boundary conditions, albeit uncommon, one could either introduce
the “deformation gradient paths” or replace the prescribed deformation gradients by the
stresses through the constitutive equations, eqn (23), and employ the analyses presentéd here.

10. ADDITIONAL REMARKS

In the analyses the region of validity in the (o, 7) plane is based on the condition that all
three wave speeds are real. For the second order hyperelastic material which we used as an
illustrative example, one should also add the condition that the volume change |F} > 0. From
eqns (2), (24) and (41) this condition leads to

1+a0+%02+§72>0. (108)

Depending on the values of the material constants a, b and e, the condition (108) may or may
not reduce the region of validity based on the condition of real wave speeds. Therefore, the
general procedure of obtaining a solution and the unexpected results presented here remain
valid.
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